
Int. J. Sulids St""'''''''. Vol. 15. No. S. pp. S6J-S7S. 1989
Pnnted In Greal BnwD.

002~1683,89 53.00+.00
t 1989 Per....oD Prao pic

NONLINEAR VIBRATIONS OF IN-PLANE LOADED,
IMPERFECT, ORTHOTROPIC PLATES USING

THE PERTURBATION TECHNIQUE

ALAVANDI BHIMARADDI
Department of Civil Engineering. University of Canterbury. Private Bag.

Christchurch. New Zealand

(Rcce;rcd 16 July (988)

Abstraet-A perturbation technique is used to study the effects of in-plane inertia. rotary inertia.
and shear deformation on the nonlinear free vibration response of an imperfect. in-plane loaded
orthotropic plate. The von Karman type governing equilibrium equations of the plate correspond
to those of a recently proposed shear deformation theory which employs parabolic shear strain
variation across the thickness. The perturbation parameter is taken as the thickness to side length
ratio of the plate. By eltpressing the generalized displ,lcements in the form of a truncated power
series of the perturbation par"meter. the five governing equ"lions of the problem under consideration
are reduced to " single second order ordinary ditTerenti,,1 equ"lion in terms of the tr"nsverse
displ"cemenl. The solution of this equ"lion is obtained by the method of multiple scales. Numeric,,1
rcsults illustr"te the influence of v"rious p"r"meters under consider"lion.

INTRODUCTION

A very large part of the theoretical investigation c.trried out on the vibration of plates
subjected to in-plane loading is limited to linear small deformation theory as discussed by
Bert (19H2) .lOd Leissa (19H I). The inclusion of geometric nonlinearities while analysing
the response of in-plane loaded plates is essential due to the presence of in-plane loading.
Free vibration of plates with in-plane loading arc of two types.

In the first type the free vibration characteristics of the plate in the presence of in-plane
load is carried out. In this case the in-plane lo.td may be constant or it may be periodically
varying in time in which case the parametric vibrations are to be considered. A short history
of this class of problem and the rdated references may be found in the papers by Pasic and
Herrmann (1983.1984).

The influence of in-plane loading, initial imperfections. in-plane inertia. and the geo­
metric nonlinearitics (taken individually) on the dynamic response of structures has been
considcrcd extensively by Bolotin (1964). For the first timc, Pasic and Hcrrmann (1984)
gave a general formulation for the free vibration analysis of plates treating all the parameters
simultaneously. The important finding of Pasic and Herrmann (1984) was that the influence
of in-plane inertia is considcrablc in nonslender plates whcn they are parametrically excited
and may be neglected when the plate is subjected to a time independcnt in-plane load of
constant magnitude.

Another more oftenly neglected aspect in the analysis of in-plane loaded plates is the
influence ofdeformability of the loaded edges. By finding the exact solutions to the in-plane
equilibrium equations, so as to satisfy the applied load exactly, Pasic and Herrmann (1983)
investigated the effect of loaded edge dcformability on the buckling and vibration of plates.
They concluded that, for square (or nearly square) plates, the edge deformations are to be
considered while they may be neglected for long rectangular plates.

In the second type of plate problems with in-plane load, the influence of initial buckle
due to in-plane preload on the subsequent vibration characteristics is of interest. Thus in
this case the buckled position due to the application of in-plane prcloading is found by
performing the static analysis. Then the small amplitude vibrations arc imposed on the
initially buckled plate in the form ofa buckled mode. Hui (1985) and Hui and Leissa (1983)
have considered this problem using a single mode analysis for homogeneous and laminated
plates.
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Fig. I. Coordinate system and dimensions of the plate.

The multimode analysis using the Ritz mt:thod is given by lIanko and Dickinson
(1987a) for isotropic plates. Also. I1anko and Dickinson (1987b) have carrit:d out very
useful experimental investigations on isotropic plates subjected to in-plane preload.

In all the above investigations the classical thin plate theory has been the basis for
governing equilibrium eq uations. It is needless to stress the importance of inclusion of shear
deformation effects in the analysis of thick and even thin orthotropic plates. Bhimaraddi
(1987b. 1989) has given a single mode solution to hoth types of problems using the recently
proposed shear deformation theory due to Rhimaraddi (1987a) but the effects of in-plane
inertia and the shear rotary inertia were neglected.

It is dillicult to take into account these cf1'ects when one performs a straightforward
analysis such as those given hy Amhartsumian c( ai, (1l)6(,). Bhimaraddi (1987b). However.
as shown hy Pasic and Herrmann (1984) a regular perturhation solution to the prohlem
renders possihle the inclusion of inplane and rotary inertia ctfccts. In this paper the problem
of an imperfect orthotropic plate with in-plane loading has heen considered using the
perturhation technique. Also. the ellccts of shear deformation. rotary inertia. and in-plane
inertia have heen taken into aceount.

ANAl.YSIS HJR IN·Pl.A~[ RESPONSE 01,' Pl.ATE

The middle surface strains incorporating large dt:formations in the sense of von Kar­
man arc given as (rt:fcr to Fig. I)

. . (~'11 I (clll')1 (;;.\\') (1111'0)I = +. -.- +.-- ..
" 11.'( 2 ux ax ax

( I )

where II. l' arc the in-plane displaeements in the x and y direetions: II' is the lateral
displacement measured from the initially imperfect position (11'0) of the plate. We introduce
the following dimensionless quantities for convenience.

b=h/lI:X=x/lI: Y=y/a: U=II/a: V=t'/a: W=I\'/a: Wo=\\'o/<>a:

C1= £ I /P( I - I' I I' 1): r = c115 /J 12a: 'I" = E1/EI: tIl" = G d I - \' I I' J /E I :

'III = GI,(I-I'II'")/£I: tl 11 = G,,(l-VII',)/£l: N: = n;/K,r: H,"!' = n;!Kl)':

i. = n;!n;: K = E,h/( 1- 1'1 I',): £21'1 = 1"£1: r = a/h. (2)

In the above Jr. a. h arc the thickness. length. and width of plate: ( is the time coordinate:
£1. £" arc the Young's moduli in the x and y direction: \' I and 1'1 arc the Poisson's ratios:
G 11 is the in-plane shear modulus: G 1" G" arc the transverse shear moduli: nO;. II; arc the
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applied in-plane loads in the x and y direction; p is the mass density of the material. The
in-plane membrane forces are given as (Bhimaraddi. 1987a. b, 1989)

N.. = nTIK = U' +! W'~ +<5W' W~+v~(V"+! W~~+<5W' W~)
N,. = n)K = v~(U'+! W'~+<HV'W~) +'7~(V"+! W~~+<5W'W~)

NT. = nT,/K = '7dU' + V' + W' W' +<5W' W~+<5W' W~). (3)

Here ( )' = O/CX and ( r = c/o Y. [n the present shear deformation theory. five generalized
displacement parameters have been employed to describe the displacement components at
a given point (x.y. :). They are of the form

ii = u+~4J-:ow/cx; v= v+¢lj;-:iJw/iJy; Ii' = w; ~ = :(1-4:~/3h~) (4)

where ii. V. lV are the displacements in the x.y.: directions at any point (x.y.:); 4J.lj; are
the shear rotations in addition to the familiar flexural rotations owliJx and iJw/oy. Detailed
discussion regarding the selection of the above displacement forms (4) and the derivation
of equilibrium equations and the associated boundary conditions can be found in a paper
by Bhimaraddi (1987a). Obviously there are five equilibrium equations: two corresponding
to It and v; two corresponding to 4J and lj;; and one corresponding to w displacement
parameter. Equilibrium equations governing the in-plane motion are written as

U" +'7I~U"+ (v~ +'1,~) V" = - W' W" - (v~ +'71~) W· W·,

-'llzW' W·· -J(W" W;l+ W' W7J)-/5v~(W" W;l+ W· W~')

15 2

-/)'112(W" W;,+ W' W;j'+ W·· W;l+ W· W;,')+ 120

(V~+'111)U" +'7~ V" +'71~V" = -'7~ W· W.. -(V~+'7I~)W' W'·

-'711 W· w" -J'11( W"'V;,+ W· W;I) -/5v~(W" W;I+ W' W~')

J~ .
-'7IZJ(W" W~+w' W;/+ W·, W~+ W· W;;) + 12 v. (5)

[n the above. superposed dots indicate the differentiation with respect to r. For an alround
simply supported plate the boundary conditions are given as

U = W = W" = 0 at X = 0; W = W" = 0 at X = I

V = W = W.. = 0 at Y = 0; W = W .. = 0 at Y = Ilr

(6)

Since the displacements U and V are one order higher than the displacement W the
following perturbation series due to Pasic and Herrmann (1984) are used.

Substituting the series (7) into eqns (5) and equating the like powers of J one obtains the
following system of equations

U'; +'712 U'I'+ (v~ +'71~) V~'= - W'I W'; -(I'~ +'712) W', W'I '

-'712 W '1 W~'-(W'; W~+ W'I W~)-V2(W'I'W~+ W', W~)

- '71 ~(W'I 'W~ + W'I W~'+ W~W~ + W'IW~')
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(v: +'1 1:)iFI'+ 11: V'I'+/'fl: V; = -'1: W'I W'l'-(V: +'11:) W'l W'l'-/'fl: W'l W';

-/'f:(Jt"I'W~ + W'l U.'~") - V:(Jl"I'W~ + W'l W~')

-/'fI:(W'; W~+ W'l W~'+ W'llV~ + W'l fVo)

V'; +'1 I:V;'+ (v c+ I] I ::W;' = 1:. i\
(1':+Tll:H/;'+tT:: f';'+ I] !::v; = ~ i\.

(8)

(9)

The boundary conditions (6) become

V I = WI = fV'; = V:: = 0 at X = 0 :

VI = ff'! = W'!'= v'c =0 at Y=O;

W! = H"; = 0 at.\'

H'l = W·!· = 0 at Y I'r (10)

rf' Nt! d Y = N~; f' Nt:: d Y = 0 at X = I

il

NVI dX = N,·;
II

in which N\l. N,:: etc. arc given by

i
l

N"c dX = 0 at Y = I/rIn ( II)

N\l = V'I + ~W;c+ W'I.V;I+Vc(f"~ + !W~::+ W'I W;})

N,'I = I'::(U'I + !W;c+ W'I W;}) +ll::(V"1 + ! w(~::+ W'} fV;)

N... l = Tk(V'I + V'I+ W'I W'I + W'I W;l+ W'I W;) ( 12)

The simply supported boundary conditions arc satisfied by using the transverse dis­
placement of the form

WI = fer) sin nX sin nr Y

and the initial imperfections are assumed to be of the type

Wo = };l sin rrX sin rrr Y.

(14)

( 15)

Substituting eqns (14) and (15) into (8) and using the boundary conditions (10) and (II)
we obtain the following expressions for VI and VI'

VI = U:: +2jJ;l)(a l sin 2nX+(1:: sin 2nXcos2rrrY+a1X) +(hIN: +b::N:)X

VI = (fc +2}f()(a4 sin 2rrr Y+a5 cos 2rrXsin 2rrr Y+a6 Y) + (h::N: +hlN\~) Y. (16)

Substituting eqns (14)-(16) into cqns (9) and using the boundary conditions (10) and (II).
pertaining to V:: and V: displacements. we obtain the following expressions for V: and V::.
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1 ! ' r. ( . Y
J

)v: = 2(1 + -+ fol) a,:sin21trY+alJ cos 21tXSIn 21trY+aI4 Y+a6 n

+(bJ-J:+b:Ny*)b6Y+(b:N:+bJNy*)(b7Y+ ~;). (17)

Using the solutions (16) and (17) in eqns (12) and (13) the following expressions for
in-plane forces can be obtained.

Nfl = (p +2ffo)a7 cos 21tT Y+N~

N" I = (f: + 2ffo)lls cos 21tX+ N,·; N tyl = 0 (18)

Nt: = 2(fj'+F + foj')(llis cos 21tX+aI6cos21trY+1l17 cos 21tXcos 21trY

+al s +aIQX: +ll:o Y z)+ (b lN~ +b:N.~) (bs + ~:)+ (b:N~ +bJN:) (bQ+Vz ~:)

N,.: = 2(fj' + J: + foj')(a:, cos 21tX+lln cos 21tr Y+a2J cos 21tXcos 21tr Y+a:4

+a:sXz+ll: 6 Y:)+(b,N~+bzN:)(b,o+V: ~:)+(b:N:+bJN,~)(bll +'1: ~:)

') I" !' r J") '., ,,-' ., YN...:=_( J+ -+;u lln SIn _1t ,\SIn_1tr . ( 19)

This completes the analysis for in-plane response in which the lateral displacement
(14) is the only unknown to be determined. In the next section we consider the inclusion of
transverse shear and rotary inertia clfects,

INCLUSION OF TRANSVERSE SHEAR AND ROTARY INERTIA EFFECTS

The two equilibrium equations governing the transverse shear response are written in
dimensionless form as

(20)

It is well-known that the shear rotations are one order higher than the in-plane displace­
ments. Thus, we select the following series for two shear rotations cP and t/J :

It may further be noted that any other choice, than series (21), would have been inconsistent
with eqns (20) as there are terms in which e5 appears in the denominator, Substituting the
series (21) and (14) into eqns (20) we obtain the following set of equations in terms of 41,s
and t/J,s.

8'1IJ411 = 1t 3(1 +r:vz+2rz'1lz)fcos 1tX sin 1trY

8'1ZJt/J 1 = 1t Jr(vz +rZ"z +2" d f sin 1tX cos 1tr Y (22)
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168 I ,.
--'111"') = A-':+t/I,A,':+(v'+'1"jt/J':--"'117 .'1' '1'_ _'1'_ - '- - 12'1'

168 " . I .
-\7'1c 1I/1, = t/ cl/l c+'1lc!/J';+(V c+'1d(P;'-I2'PI' (24)

Solving the above equations successively we obtain the following expressions for 1>,s
and I/I,s,

1>1 = ac8fcosn:Xsinn:rY; 1/11 = (/:,,/sinn:.Xl.:osn:rY

1>, = (a,of+(/,J)cosn:Xsinn:r}": I/lc = «(/,J+u"j)sinn:Xwsn:rY

(P 1 = (a14f + II 1,)') I.:OS n:X sin n:r}"; If, = (<I \hI + a ,7)') sin n:X I.:OS n:r Y. (25)

Again, we note that the only unknown to be determined in tXlns (25) is the transverse
displal.:ement whidl Cln he determined hy analysing the lateral motion.

A;\I:\LYSIS Of' OUT-O(',Pl.AN!' RI:SPOt"Sr: Of' Pl.ATE

The e4uation governing the Ialeralmotion of the plate may he written in dimensionless
form as (Hhimaraddi. (lJX7h)

12 12 12 /,'" ,..1 v
-15(V"-15(\'~+'2t/d«(V"+IV")-(5'/:11' +,.

+ 2(v c+b/ , J WOO" +t/, W" = 12(N, I +ii' N,c)( W" +iiW;;)

+ 12(N" +()C N,,)( H'" + ()IV;,') + 24(): .v,,:( W" +(HV,~')

+ 12(N'" +()C N',c +(r N'",)( ~V' +(HV;,)

+ 12(N: , +()c N;.c +()C N'"c)( W' +i;W;,)

I 2(/ .. (r.. .. () c .. •.
+ t· e: ,/- W + '1

1
(W" + H"') + 1_ «(P' +1/;")nJ _ )

(26)

where q is the applied load in the lateral direl.:tion on the plate surfal.:e. All the 4uantities
in the above equation have already been expressed in terms of a single quantity f(T).
Substituting the same and applying the Galerkin's method the following equation is

obtained.

Some comments regarding the various terms in the above equation are in order. It
may be seen that ll" is the I.:ontribution due to the indusion of rotary inertia of the tlexural
rotations and ll)., to a~, are the I.:ontrihutions due to the indusion of rotary inertia of the
shear rotations to the total inertia. The terms from all to a~j are the contributions due to
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the inclusion shear deformation to the stiffness term. The terms containing a46• a4 7 and a49
are due to the inclusion of in-plane inertia. Also the terms containing aso and as, arise due
to the inclusion of shear rotary inertia and they are neglected in the subsequent treatment
due to their smallness as compared to other terms.

It is to be noted here that the inclusion of the effect of rotary inertia is to increase the
inertia and that of shear deformation is to decrease the stiffness of the system. as compared
to the one when they are neglected. Further. we note that the correction to the inertia term
due to the inclusion of rotary inertia of the shear rotations is very small as compared to
that of the flexural rotations and hence one can safely neglect the same. By using F= 1+/0
eqn (27) can be written as

and the Ct's in the above equations are defined as

(X, = I +<52aJK+J4"jY+J6a40+<5K"41; 01:: = a42+<5 2"4J+J4"H+<56a45

CtJ = <52(a46+).a47)/12rr2(1 +).,2); 01: 4 = "4K; 01:5 = <52a49

Here we have assumed proportional in-plane loading in the x and y directions and Nc

corresponds to the static bifurcation buckling load of biaxially compressed perfect plate.
Equ~ltion (28) is the most general equation governing the nonlinear dynamic response of
an orthotropic plate subjected to in-plane and lateral loading. incorporating the effects of
rotary inertia and shear deformation. This equation is exactly of the same form as that
derived by Pasic and Herrmann (1984) for isotropic plates. (n this paper. among others,
we consider the large amplitude oscillations, parametric excitations, and forced harmonic
oscillations of orthotropie plates. The following orthotropie material properties are used in
the numerical examples:

and the Poisson's ratio in the ease of an isotropic plate examples is taken as 0.3.

LARGE AMPLITUDE VIBRATIONS OF AN IN-PLANE LOADED PLATE

Under the absence of lateral loading (q = 0) and time independent in-plane loading
(N = 0) eqn (2H) can be transformed as

(30)

Here superposed dots indicate differentiation with respect to (01. r), and we have used the
following definitions.

01. = J(cc:( 1+ N - 0I:4/MOI::)/Ctd; f. = Ct 4/( 1+ N -Cl.4/MOI::)0I::

y=Cts/CI.,; Jl=/o/(I+N-0I:4/5/0I::). (31)

using the method of multiple scales (Nayfeh and Mook, (979) the solution of eqn (30) for
perfect plates (/0 = 0) can be written as

(32)

where 0 = ONI. r + {J; A and pare the constants to be determined from the initial conditions
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Tablt: I. Lim:ar frequencu:s (Qi.l of square isotropic plates (<5 = 0.1. A. = \)

Classical theor, Shear deformation theory
I, NRI FRI NRI FRI SRI

.'i = 0
0.0 19.73') 19.579 \9.210 19.054 19.060
0.\ 19.807 19.M6 19279 19.\23 19.\28
02 20.007 19844 19485 19.327 19.333

:". = -04
0.0 15.557 15431 14880 l-U59 I·UM
0.1 15.M2 15.515 14.969 l-U~48 14852
0.2 15.895 \5.71>6 15233 151!)9 \5.114

NRI. wtary inertias neglected: FRI. tlnural rotary inertia included: SRI. both
fk\ural and shear rotary inertias included

and n,L is the nonlinear frequency which is dependent on the amplitude A in the following
manner:

(33)

It is clear from the above expression that the ctft:ct of geometric nonlinearity is to
increase the frequency. whereas the clrect of nonlinear inertia is to decrease the same. The
same conclusion has been made by Pasic and Herrmann (19X4) in their study of rectangular
plates and by Bolotin (1964) in the study of beams. The constant C I appearing in eqn (32)
has the following dclinition

(34)

It may be observed from Table I and 2 that the shear deformation effects on linear
frequeOl:y bewme im:reasingly dominant with im:reasing in-plane load and the initial
imperfections. Even in the case of isotropic plate the difl"crence between CPT and SOT is
about 5% (N == -0.4. j;1 == 0.2). As noted earlier. the influence of shear rotary inertia on
the frequency is very small and can be neglected altogether. The material anisotropy requires
the usc of shear deformation theory as there is a difference of more than 20'10 between the
results of the classical (CPT) and the shear deformation (SOT) theories.

Tables 3 and -l depict the nonlinear frequencies for in-plane loaded perfect square
plates. We note that the inlluence of in-plane inertia is insignificant even as the amplitude
of vibration increases. There is about 0.25% ditlcreOl:e between the frequencies with in­
plane inertia and without in-plane inertia being considered. This ditlcrence docs not seem
to depend much on the magnitudes of in-plane load.

Table 2. Lin"ar freqllen"i"s (n i ) of squar" orthotropi" plat"s (,i = 0.1. ;. = I)

Classical th"ory Shear deformation theory

I~ NRI FRI NRI FRI SRI

.'i = 0
0.0 10.697 10.610 9.015 8.942 8.953
0.1 IlUU2 10.7+1 9.176 9.101 9.112
0.2 11.228 11.137 9(;40 9.562 9.573

N = -0,4
0.0 9051 '1',.977 6.983 6.927 6.935
0.1 9.210 9.135 7.189 7130 7.139

0.2 9.673 9594 7.773 7710 7719
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Table 3. Nonlinear to linear frequency ratios (O..L:Odt for in-plane loaded perfect square isotropic
plates (J = O. I• ..;, = 1)

Without in-plane inertia
A"" 1·5 A "" 31 5 A "" I

With in-plane inertia
A = 15 A = 35 A = I

N=O
CPT 1.033 1.075 1.159 1.032 1.073 1.155
SOT 1.005 1.050 1.135 1.005 1.047 1.132

N"" -0.4
CPT 1.053 1.1 23 1.261 1.054 1121 1.257
SOT 1.009 1.08! 1.225 1,009 1.080 1.222

t Linear frequency corresponds to the value of SOT.
CPT. classical plate theory: SOT. shear deformation theory,

Table 4. Nonlinear to linear frequency ratios (O ..r/0L) for in-plane loaded perfect square orthotropic
plates (t) = 0.1.;' "" I)

Without in-plane inertia
A = 1;5 A = 3/5 A = I

With in-plane inertia
A = 1,5 A = 3/5 A "" I

N=Q
CPT 1.208 1.389 1.751 1.208 1.J94 1.764
SOT 1.027 1.246 1.672 1.027 1.246 1.683

N = -0.4
('fYf 1.329 1.605 2.158 1.3J0 1.611 2.172
SDT 1.045 1.40) 2.120 1.045 1.407 2.131

Tahlc 5. Steady-statl.: amplitude valucs of parametrically cxcited square
orthotmpic perfcct plate (P = -0.2;;' = I; SDT rcsults)

,S = 0.1

IU9461t
0.31<575:

,S = 0.05

O.MOb3
0..+3730

IS = 0.025

0.45323
0.45231

J = 0.01

0.45697
0.4561<2

t Illdudillj,t in-planc incrtia.
: Ncglecting in-pl;lnc incrti;l.

PRINCIPAL PARAMETRIC OSCILLATIONS

In this section we consider the case of the subharmonic resonance of order two for
perfect pbtes (j~ = 0). rn this case elln (28), undl:r the absence of lateral load (q = 0) and
undl:r the presence of time dependent inplane load (N = P cos 2r'). can be writtl:n as

(35)

Here the superposed dots indicate the differentiation with respect to r', and we have used
the following definitions for coellicients appearing in the above equation.

Again using the method of multiple scales and restricting ourselves to the first approxi­
mation, the solution of eqn (35) can be written as

F = A cos r' +0(<.).

Here A is the steady-state amplitude which is given by the following relation

A = ±J( -46/(31':-2/'».

(37)

(38)

Table 5 shows steady-state amplitude [eqn (38)] values for orthotropic square plate
with various thickness to length ratios. It is clearly observable that the effects of in-plane
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Eqn (ill

:':c w

Fig. ' ~onhncar rcsponst: ,unt:.

inertia are predominant in thick plates and their effects become less predominant as the
thickness of the plate decreases. For 10% thick plate the ditference in the amplitudes is
about 2.3% between the results when the in-plane inertia is considered and is not considered.
Whereas, for 1% thick plate this difference is only 0.04%.

FORCED RESPONSE OF PLATES SUBJECTED TO HARMONIC LATERAL PRESSURE

In this section we consider the nonlinear response of plates subjected to harmonically
varying lateral pressure (If = fI cos (II!') on the surface. Equation (28) for perfect plates,
under the absence of in-plane loads, can he written as

(39)

Here superposed dots indicate dil1i:rentiation with respect to !' and (I) is the frequency of
the applied pressure. We have used the following delinitions.

The solution of eqn (39) to first approximation l:an be written as

F = A cos W!' (41)

where A is the steady-state amplitude. The relation between A and the applied load par­
ameters (k, w) can be obtained using the method of multiple scales as

(42)

The typical plot ofeqn (42) is shown in Fig. 2. Note that point "0" in Fig. 2 corresponds
to the point where the motion becomes unstable or the "jump" phenomenon occurs. Also
at this point we have dw/dA = O. Utilising this fact and eqn (42) we obtain the following

relation.

(43)

The plot of this equ~ltion is also shown in Fig. 2. Thus the critical amplitude (A .. ) and
critical forcing frequency (w..), which are the coordinates of the point "0", can be obtained

using eqns (42) and (43) as

[
2k Jll

,{ = - (3/: - 2,')
(44)

Some numerical results depicting the values of the critical frequency are shown in
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Table 6. Critical forcing frequency (wr ) values of orthotropic square plate (SOT
results)

k

I
2
3

2.0428t
2.6554
3.1692

b = 0.1

2.0487:
2.6647
3.[8[4

1.959[t
2.5225
2.995[

b = 0.05

1.9609:
2.5254
2.9988

t Neglecting in-plane inertia.
: [ncluding in-plane inertia.

Table 6 for different values of plate thickness and magnitude of the applied load. It is
evident from this table that the effects of in-plane inertia is insignificant even in the case of
10% thick plate.

NONLINEAR VIBRATIONS OF PRELOADED (IN-PLANE) PLATES

Here we consider the second kind of in-plane loaded plate vibration problem and study
the influence orin-plane inertia on the vibration characteristics of the preloaded plate about
its static deflected position. The governing equation corresponding to the static response.
under the absence of laterally applied load (q = 0) and after ignoring the time derivatives.
can be written from eqn (28) as

(45)

Here F, represents (refer to Fig. 3) the deflection of the in-plane loaded imperfect plate. If
the plate is imperfection sensitive then the limit load Nt, < I. Now we superimpose the large
amplitude vibrations (it). in the form of the deflected shape. over the static deflected
position. Substituting J~+ F, in place of Fin eqn (28) and noting that the time derivatives
of /.: vanish. we ob[ain the following equation.

(46)

where w. represents linear frequency of the in-plane preloaded plate and the following
definitions have been used.

, iX z(\ +N)-iX4f~+3iX4F;
w; = iX sF,2+ iXl

iX 4
£=--,--;

iXsF; +iX,
(47)

It is evident from the presence of iXs term in the frequency expression that the frequency
of the preloaded plate is also effected by in-plane inertia. However, in this case when the
plate is vibrating about its static deflected position the in-plane inertia increases the fre­
quency value unlike the case of a plate vibrating about its initial unloaded position where
the elfect of in-plane inertia is to decrease the same. It can easily be shown that the frequency

Fig. 3. Deflected positions of in-plane loaded plate.
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Fig. 4. Variation of frequency of an orthotropic plate with in-plane preloading.

of a preloaded plate vanishes at the limit load. At limit load we have dN/dF, = O. Using
this fact and eqn (45) one can obtain the following equation:

(48)

Substituting Fl. in place of F, one obtains an expression for N~ from eqn (45) in terms of
F/.. Then substituting this expression for N,. and also Fl. in place of F in the expression for
frequency, i.e. first of the eqns (47), one can see that the frequency expression rcduccs to
that of eqn (48). The solution of eqn (46) can be obtained by the method of multiple scales
which yields the expression for nonlinear frequency ,IS

[
3/; 5~~ 7, I ] '

W,VI.!W, = I + ~ - ') 4 + /1- - Y A,i·
8w, I_w, 4 4

(49)

In the above, Ad represents the amplitude of vibration of the prcloaded plate about its static
deflected position. Figure 4 depicts comparison of frequcncies (w,) of a preloaded plate
considering and not considering the in-plane inertia effects. It may be observed that the
inl1uence of in-plane inatia is very small and can be ignored even in the present case of
10% thick plate.

CONCLUSIONS

In conclusion we note that the regular perturbation tcchnique to the nonlinear plate
vibration analysis has been used to study the effects of shear deformation, rotary inertia,
and the in-plane inertia. From the numerical results obtained for different plate vibration
problems it is shown that the effects of in-plane inertia are to be considered while analysing
the nonlinear response of parametrically excited plates and they can be safely ncglected
while analysing other types of plate vibration problems.

Acknc,.,1ed.qenlt'nls-The author thanks Mrs Priyadarshini and Mrs D. Forbes for their help in typing the
manuscript.
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